Abstract
Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they’ll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.
De Bitcoin Whitepaper is interessant om te lezen, als je wilt verdiepen in de ‘officiele start’ van de crypto wereld die nu enorm grootst is geworden!
Introduction
Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments.
Transactions
We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the
next by digitally signing a hash of the previous transaction and the public key of the next owner
and adding these to the end of the coin.
Timestamp Server
The solution we propose begins with a timestamp server.
Proof-Of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proofof-work system similar to Adam Back’s Hashcash [6], rather than newspaper or Usenet posts.
Bitcoin Whitepaper conclusion
Conclusion
We have proposed a system for electronic transactions without relying on trust. We started with
the usual framework of coins made from digital signatures, which provides strong control of
ownership, but is incomplete without a way to prevent double-spending.